2nd Order Solutions -Applying EBM and GBM in Predicting Donations upon Receiving Mail Offers

Tego Chang, Ying Feng, Weiliang Hu, Abhijith Tammanagari

Background

Individual

Financial Institution

Algorithms

Delinquent Record

Insufficient Income

Main Project Objective - Model Comparison

GBM (Gradient Boosting Machine)

- Mainstream Algorithm
- Pros: Fast, high accuracy
- Cons: Black-box, hard to explain

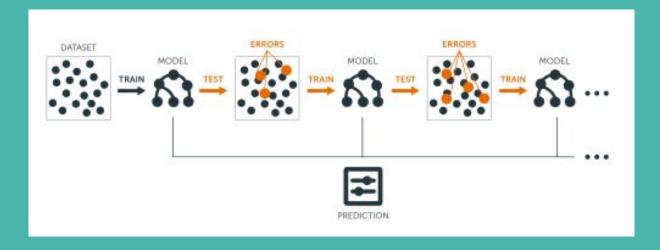
EBM (Explainable Boosting Machine)

- Newer Model
- Potential solution on explainability

Model Introduction - GBM

GBM (Gradient Boosting Machine)

- Ensemble Model
- Boosting Method Convert weak learners to strong learners
- Gradients in loss function



Model Introduction - EBM

EBM (Explainable Boosting Machine)

- Generalized additive model (GAM)
- Learn each feature function f using modern techniques(bagging, gradient boosting, etc.)
- Auto-detect and focus more on interaction term
- Easy to reason about each feature contribution

$$g(E[y]) = eta_0 + \sum f_i(x_i) + \sum f_{i,j}(x_i,x_j)$$

Executive Summary

GBM

AUC: .61

Running Time: 229s (All)

AUC: .61

Running Time: 22s (Selected)

EBM

AUC: .62

Running Time: 71s (All)

AUC: .61

Running Time: 11s (Selected)

Objectives Recap

Comparison

AUC, Confusion Matrix, Training Time

EBM Explainability

Feature Importance

KDD Cup 1998 Dataset Introduction

Mail for Donations

Sending mail offers with different promotion cards to target users and ask for donations.

2

Response Variables

Target_B: whether the user donates
Target D: how much

the user donates

90K+

Observations

Size of training and validation dataset is fairly large.

Each row represents a potential donor

479

Features

219 **numeric** variables

254 **categorical** variables

Data Processing Challenges

Unbalanced Response Variable

95% are Non-Donors 5% are Donors

Ambiguous
Variables and
Variables with
significant amount
of missing values

DW3: Percent Duplex Structure

2nd byte = Socio-Economic status of the neighborhood

Variables

- 1 = Highest SES
- 2 = Average SES
- 3 = Lowest SES

Solutions

Unbalanced Response Variable

Undersampling

Ambiguous
Variables and
Variables with
significant amount
of missing values

Feature engineering/Feature selection

Encoded Categorical Variables

One-hot encode all the digits

Encoded categorical variables

Let's look at RFA status for RFA_2, RFA_3...... to RFA_22:

It's a 3 digit code representing the recency/frequency/amount status of the donors.

F=FIRST TIME DONOR Anyone who has made their first donation in the last 6 months and has made just one donation.

N=NEW DONOR Anyone who has made their first donation in the last 12 months and is not a

present recency based on the date of the last gift, it has 6 categories, represent frequency based on period of recency i has 4 categories, and the amount in the last gift, it has 7 categories.

```
A=$0.01 - $1.99

B=$2.00 - $2.99

C=$3.00 - $4.99

B=$5.00 - $9.99

E=$10.00 - $14.99

F=$15.00 - $24.99

G=$25.00 and above

A=$0.01 - $1.99

G=$25.00 and above

A=$0.01 - $1.99

A=$0.01 - $1.
```

S=STAR DONOR STAR Donors are individuals who have given to 3 consecutive card mailings.

Solution

Separate the code into multiple variables, suffix them according to it's digits order

One-hot encode all the digit-variables according to it's possible values

Merge all the data and make sure it is done correctly

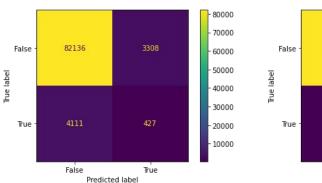
Two Selection Methods

- All Variables (Numerical and OHE Categorical)
- Subset Feature Selection
 - 23 key features that makes the most sense to common intuition in predicting donor/non-donors.
- More scientific approach to Feature Selection/Engineering (Future goal)
 - T-test, Permutation test for scouting important features
 - Lasso
 - Select top-features by training a random forest classifier based on their importance.

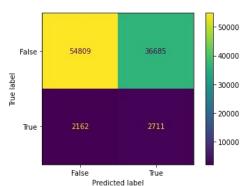
Comparison between EBM and GBM

GBM Models

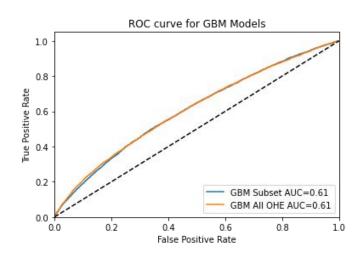
All Variable Stats



Feature Selection Stats



ROC Curve

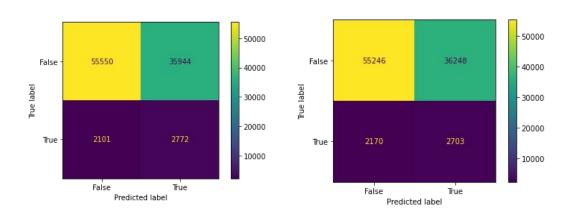


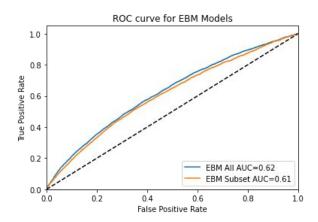
EBM Models

All Variable Stats

Feature Selection Stats

ROC Curve





EBM Important Features in All vs Subset

Most Important features using all Features

Most Important Features using subset

PEPSTRFL & CARDGIFT AGE & RFA_17

PEPSTRFL & RAMNT 15

AGE & RFA 18

PEPSTRFL & MINRAMNT

RFA_2

PEPSTRFL

RFA_2F

PEPSTRFL & NGIFTALL

CARDGIFT

RAMNT_8

RFA_2A

LASTGIFT

PEPSTRFL & FISTDATE ODATEDW & PEPSTRFL CARDGIFT

RFA_2_2

AGE

DOMAIN 2

TCODE

NUMPRM12

RFA 5 3

MAXRAMNT

CARDPM12

WEALTH2

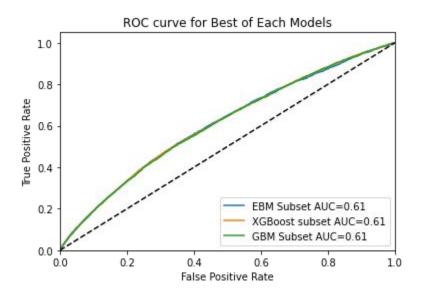
RFA_6_2

RFA_2_3

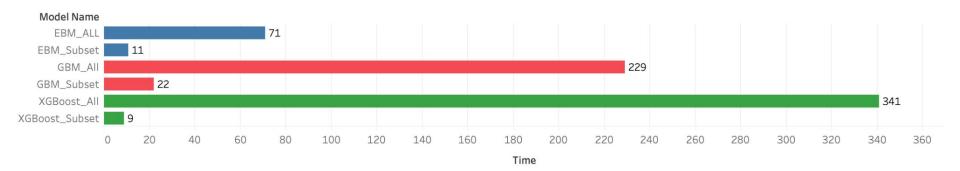
CLUSTER

RFA_4_2

EBM vs GBM (Performance)



GBM vs EBM (Training Time)



Explainability of EBM

Feature Categories

We briefly classified the 479 features **into 3 categories**.

Social & Economic Status

Age

TCODE (Title)

DOMAIN_2 (Neighborhood)

CLUSTER (Donor group)

WEALTH2 (Family population) **INCOME** (Household)

Promotion & Donor Statistics

NUMPRM12 (Promotion Number)
CARDPM12 (Card promotion)
NGIFTALL (Donation lifetime)
CARDGIFT (Card to donation)

MAXRAMNT (Largest donation amount)

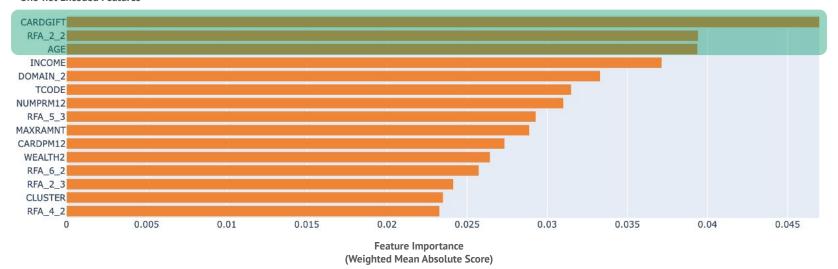
RFM Status

RFA (Recency/Frequency/Monetary)

https://www.flaticon.com/free-icon/exchange_1011 https://time.lv

What affects EBM in predicting donation?

One-hot Encoded Features

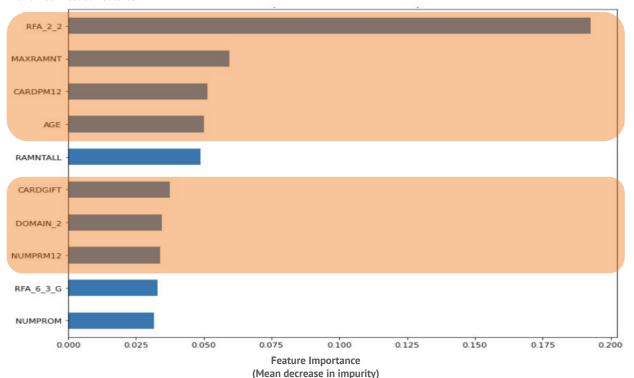


EBM considers:

- 1) total number of donations to card promotion (CARDGIFT)
- 2) donation frequency in the year of 1997 (RFA_2_2)
- 3) age

as the reference for its decision-making.

Comparing EBM's decision-making with GBM

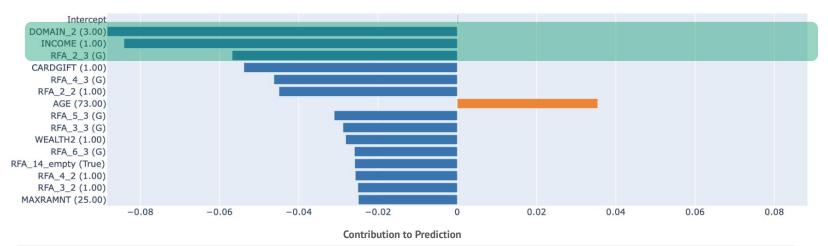


Both EBM and GBM consider similar features in predicting donations.

What goes to predicting a non-donor?

On the case of **correctly identifying as a non-donor** with confidence level 0.67

One-hot Encoded Features

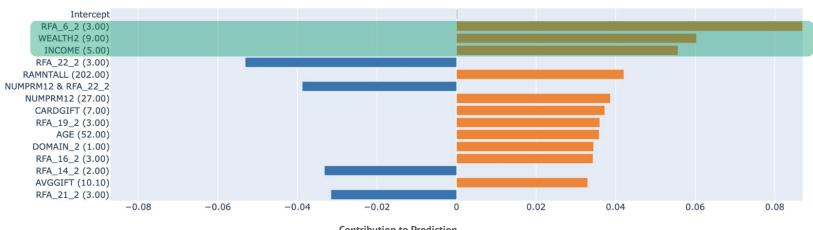


The person who:

- 1) lives in the neighborhood with the **lowest Socio-Economic status** (DOMAIN_2)
- 2) has a household **income at the level of 1** (INCOME, range from 0 to 7)
- 3) donates **more than 25.0 dollars** (amount of G) in the year of 1997 (RFA_2_3) is predicted as a non-donor for the following promotion.

What goes to predicting a donor?

On the case of **correctly identifying as a donor** with confidence level 0.61



Contribution to Prediction

The person who:

- 1) donates **3 times** (second to the highest category) in the year of **1996** (RFA 6 2)
- 2) has the highest family wealth rating (WEALTH2, range from 0 to 9)
- 3) has a **household income at the level of 5** (INCOME, range from 0 to 7) is predicted as a donor for the following promotion.

Next Steps

Scientific Way of Feature Selection/Engineering

Selected variables with feature engineering

Algorithmic Level Comparison

- 'What is causing the performance difference?"
- Algorithmic Differences

Explainability to Fintech

Applicability

Thank You! Any Questions?